HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Image Retrieval
Image Retrieval On Rparis Hard
Image Retrieval On Rparis Hard
評価指標
mAP
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
mAP
Paper Title
Repository
R–GeM
56.3
Fine-tuning CNN Image Retrieval with No Human Annotation
FIRe
70.0
Learning Super-Features for Image Retrieval
HOW
62.4
Learning and aggregating deep local descriptors for instance-level recognition
HesAff–rSIFT–VLAD
17.5
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
Token
78.56
Learning Token-based Representation for Image Retrieval
DELG+ α QE reranking + RRT reranking
77.7
Instance-level Image Retrieval using Reranking Transformers
HesAff–rSIFT–HQE
44.7
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
Hypergraph propagation
83.3
Hypergraph Propagation and Community Selection for Objects Retrieval
Dino
51.6
Emerging Properties in Self-Supervised Vision Transformers
DELF–ASMK*+SP
55.4
Large-Scale Image Retrieval with Attentive Deep Local Features
HesAff–rSIFT–SMK*+SP
31.3
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R – [O] –SPoC
44.7
Aggregating Local Deep Features for Image Retrieval
-
HesAff–rSIFT–SMK*
31.2
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
SuperGlobal
86.7
Global Features are All You Need for Image Retrieval and Reranking
R – [O] –CroW
47.2
Cross-dimensional Weighting for Aggregated Deep Convolutional Features
R–R-MAC
59.4
Particular object retrieval with integral max-pooling of CNN activations
DELF–HQE+SP
69.3
Large-Scale Image Retrieval with Attentive Deep Local Features
HesAff–rSIFT–ASMK*
34.5
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–ASMK*+SP
35.0
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R – [O] –MAC
44.1
Particular object retrieval with integral max-pooling of CNN activations
0 of 23 row(s) selected.
Previous
Next