HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
ホーム
SOTA
画像分類
Image Classification On Resisc45
Image Classification On Resisc45
評価指標
Top 1 Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Top 1 Accuracy
Paper Title
Repository
ResNet50
96.83
In-domain representation learning for remote sensing
LWGANet L2
96.17
LWGANet: A Lightweight Group Attention Backbone for Remote Sensing Visual Tasks
DecoupleNet D2
95.87
DecoupleNet: A Lightweight Backbone Network With Efficient Feature Decoupling for Remote Sensing Visual Tasks
-
LWGANet L1
95.70
LWGANet: A Lightweight Group Attention Backbone for Remote Sensing Visual Tasks
SEER (RegNet10B)
95.61
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
LWGANet L0
95.49
LWGANet: A Lightweight Group Attention Backbone for Remote Sensing Visual Tasks
AGOS
94.91
All Grains, One Scheme (AGOS): Learning Multi-grain Instance Representation for Aerial Scene Classification
SwAV (ResNet50-w5)
94.73
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
DINO (DeiT-B/16)
93.97
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
LSENet
93.49
Local semantic enhanced convnet for aerial scene recognition
-
MoCo-v3 (ViT-B/16)
93.35
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
CLIP (ViT-B/16)
92.7
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
BYOL (ResNet200-w2)
92.53
-
-
DeiT-B/16
92.48
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
SimCLR-v2 (ResNet152-w3 + SK)
89.77
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
ResNet50 (ImageNet-supervised)
88.56
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
MIDC-Net
87.99
A multiple-instance densely-connected ConvNet for aerial scene classification
-
MoCo-v2 (ResNet50)
85.4
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
SAG-ViT
-
SAG-ViT: A Scale-Aware, High-Fidelity Patching Approach with Graph Attention for Vision Transformers
0 of 19 row(s) selected.
Previous
Next