HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Image Classification
Image Classification On Imagenet Real
Image Classification On Imagenet Real
評価指標
Accuracy
Params
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy
Params
Paper Title
Repository
BiT-L
90.54%
928M
Big Transfer (BiT): General Visual Representation Learning
MAWS (ViT-6.5B)
91.1%
-
The effectiveness of MAE pre-pretraining for billion-scale pretraining
ResMLP-36
85.6%
45M
ResMLP: Feedforward networks for image classification with data-efficient training
Assemble ResNet-50
87.82%
-
Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network
ResMLP-B24/8 (22k)
-
-
ResMLP: Feedforward networks for image classification with data-efficient training
BiT-M
89.02%
-
Big Transfer (BiT): General Visual Representation Learning
Model soups (ViT-G/14)
91.20%
1843M
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
CeiT-T
83.6%
-
Incorporating Convolution Designs into Visual Transformers
TokenLearner L/8 (24+11)
91.05%
460M
TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?
Meta Pseudo Labels (EfficientNet-L2)
91.02%
-
Meta Pseudo Labels
ViTAE-H (MAE, 512)
91.2%
644M
ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for Image Recognition and Beyond
Model soups (BASIC-L)
91.03%
2440M
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
FixResNeXt-101 32x48d
89.73%
829M
Fixing the train-test resolution discrepancy
LeViT-384
87.5%
-
LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
ViT-L @384 (DeiT III, 21k)
-
-
DeiT III: Revenge of the ViT
VOLO-D5
90.6%
-
VOLO: Vision Outlooker for Visual Recognition
ResMLP-12
84.6%
15M
ResMLP: Feedforward networks for image classification with data-efficient training
NASNet-A Large
87.56%
-
Learning Transferable Architectures for Scalable Image Recognition
Assemble-ResNet152
88.65%
-
Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network
DeiT-Ti
82.1%
5M
Training data-efficient image transformers & distillation through attention
-
0 of 57 row(s) selected.
Previous
Next