HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
グラフ回帰
Graph Regression On Zinc 500K
Graph Regression On Zinc 500K
評価指標
MAE
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
MAE
Paper Title
CKGCN
5.9
CKGConv: General Graph Convolution with Continuous Kernels
GIN
0.526
How Powerful are Graph Neural Networks?
GraphSage
0.398
Inductive Representation Learning on Large Graphs
RingGNN
0.353
On the equivalence between graph isomorphism testing and function approximation with GNNs
3WLGNN
0.303
Provably Powerful Graph Networks
MoNet
0.292
Geometric deep learning on graphs and manifolds using mixture model CNNs
GatedGCN
0.282
Residual Gated Graph ConvNets
MPNN (max)
0.252
Neural Message Passing for Quantum Chemistry
GatedGCN-PE
0.214
Benchmarking Graph Neural Networks
GatedGCN-E-PE
0.214
Benchmarking Graph Neural Networks
MPNN (sum)
0.145
Neural Message Passing for Quantum Chemistry
Graphormer-SLIM
0.122
Do Transformers Really Perform Bad for Graph Representation?
EGT
0.108
Global Self-Attention as a Replacement for Graph Convolution
SAN-LSPE
0.104
Graph Neural Networks with Learnable Structural and Positional Representations
CRaWl
0.101
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
GSN
0.101
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
PNA-LSPE
0.095
Graph Neural Networks with Learnable Structural and Positional Representations
CIN-small
0.094
Weisfeiler and Lehman Go Cellular: CW Networks
GatedGCN-LSPE
0.090
Graph Neural Networks with Learnable Structural and Positional Representations
CRaWl+VN
0.088
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
0 of 36 row(s) selected.
Previous
Next