Graph Regression On Zinc 100K
評価指標
MAE
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
モデル名 | MAE | Paper Title | Repository |
---|---|---|---|
GatedGCN | 0.363 | Benchmarking Graph Neural Networks | |
MPNN | 0.288 | Neural Message Passing for Quantum Chemistry | |
MoNet | 0.407 | Geometric deep learning on graphs and manifolds using mixture model CNNs | |
CIN-small | 0.094 | Weisfeiler and Lehman Go Cellular: CW Networks | |
EGT | 0.143 | Global Self-Attention as a Replacement for Graph Convolution | |
GAT | 0.463 | Graph Attention Networks | |
ARGNP | 0.136 | Automatic Relation-aware Graph Network Proliferation | |
GSN | 0.115 | Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting |
0 of 8 row(s) selected.