HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
グラフ回帰
Graph Regression On Pcqm4Mv2 Lsc
Graph Regression On Pcqm4Mv2 Lsc
評価指標
Test MAE
Validation MAE
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Test MAE
Validation MAE
Paper Title
MLP-Fingerprint
0.1760
0.1753
OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs
GCN
0.1398
0.1379
Semi-Supervised Classification with Graph Convolutional Networks
GIN
0.1218
0.1195
How Powerful are Graph Neural Networks?
TokenGT
0.0919
0.0910
Pure Transformers are Powerful Graph Learners
EGT+SSA
-
0.0876
The Information Pathways Hypothesis: Transformers are Dynamic Self-Ensembles
GRPE-Large
0.0876
0.0867
GRPE: Relative Positional Encoding for Graph Transformer
EGT+SSA+Self-ensemble
-
0.0865
The Information Pathways Hypothesis: Transformers are Dynamic Self-Ensembles
Graphormer
-
0.0864
Do Transformers Really Perform Bad for Graph Representation?
Graphormer + GFSA
-
0.0860
Graph Convolutions Enrich the Self-Attention in Transformers!
GRIT
-
0.0859
Graph Inductive Biases in Transformers without Message Passing
EGT
0.0862
0.0857
Global Self-Attention as a Replacement for Graph Convolution
GPS
0.0862
0.0852
Recipe for a General, Powerful, Scalable Graph Transformer
GPTrans-T
0.0842
0.0833
Graph Propagation Transformer for Graph Representation Learning
TIGT
-
0.0826
Topology-Informed Graph Transformer
GPTrans-L
0.0821
0.0809
Graph Propagation Transformer for Graph Representation Learning
Transformer-M
0.0782
0.0772
One Transformer Can Understand Both 2D & 3D Molecular Data
Uni-Mol+
0.0705
0.0693
Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+
EGT + Triangular Attention
0.0683
0.0671
Global Self-Attention as a Replacement for Graph Convolution
TGT-At
0.0683
0.0671
Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
ESA (Edge set attention, no positional encodings)
N/A
0.0235
An end-to-end attention-based approach for learning on graphs
0 of 20 row(s) selected.
Previous
Next