HyperAI超神経

Graph Regression On F2

評価指標

R2
RMSE

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

モデル名
R2
RMSE
Paper TitleRepository
TokenGT0.872±0.0000.363±0.872Pure Transformers are Powerful Graph Learners
GraphormerOOMOOMDo Transformers Really Perform Bad for Graph Representation?
GCN0.878±0.0000.355±0.878Semi-Supervised Classification with Graph Convolutional Networks
GIN0.887±0.0000.342±0.887How Powerful are Graph Neural Networks?
ESA (Edge set attention, no positional encodings)0.891±0.0000.335±0.891An end-to-end attention-based approach for learning on graphs-
PNA0.891±0.0000.336±0.891Principal Neighbourhood Aggregation for Graph Nets
DropGIN0.886±0.0000.343±0.886DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
GAT0.886±0.0000.343±0.886Graph Attention Networks
GATv20.885±0.0000.344±0.885How Attentive are Graph Attention Networks?
0 of 9 row(s) selected.