HyperAI超神経

Graph Property Prediction On Ogbg Ppa

評価指標

Ext. data
Number of params
Test Accuracy
Validation Accuracy

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名Ext. dataNumber of paramsTest AccuracyValidation Accuracy
breaking-the-expressive-bottlenecks-of-graph-1No13693970.7976 ± 0.00720.7518 ± 0.0080
semi-supervised-classification-with-graphNo4794370.6839 ± 0.00840.6497 ± 0.0034
unlocking-the-potential-of-classic-gnns-forNo55475570.8258 ± 0.00550.7815 ± 0.0043
unlocking-the-potential-of-classic-gnns-forNo55496050.8077 ± 0.00410.7586 ± 0.0032
モデル 5No40067040.7432 ± 0.00330.6989 ± 0.0037
deepergcn-all-you-need-to-train-deeper-gcnsNo23364210.7712 ± 0.00710.7313 ± 0.0078
how-powerful-are-graph-neural-networksNo32880420.7037 ± 0.01070.6678 ± 0.0105
flag-adversarial-data-augmentation-for-graph-1No23364210.7752 ± 0.00690.7484 ± 0.0052
flag-adversarial-data-augmentation-for-graph-1No18369420.6905 ± 0.00920.6465 ± 0.0070
モデル 10No163461660.8201 ± 0.00190.7720 ± 0.0023
unlocking-the-potential-of-classic-gnns-forNo81736050.8107 ± 0.00530.7786 ± 0.0095
モデル 12No37171600.7828 ± 0.00240.7523 ± 0.0028
flag-adversarial-data-augmentation-for-graph-1No19305370.6944 ± 0.00520.6638 ± 0.0055
flag-adversarial-data-augmentation-for-graph-1No32880420.7245 ± 0.01140.6789 ± 0.0079
how-powerful-are-graph-neural-networksNo18369420.6892 ± 0.01000.6562 ± 0.0107
モデル 16No37586420.8140 ± 0.00280.7811 ± 0.0012
semi-supervised-classification-with-graphNo19305370.6857 ± 0.00610.6511 ± 0.0048
recipe-for-a-general-powerful-scalable-graphNo34345330.80150.7556 ± 0.0027