Graph Property Prediction On Ogbg Ppa

評価指標

Ext. data
Number of params
Test Accuracy
Validation Accuracy

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

モデル名
Ext. data
Number of params
Test Accuracy
Validation Accuracy
Paper TitleRepository
ExpCNo13693970.7976 ± 0.00720.7518 ± 0.0080Breaking the Expressive Bottlenecks of Graph Neural Networks
GCNNo4794370.6839 ± 0.00840.6497 ± 0.0034Semi-Supervised Classification with Graph Convolutional Networks
GatedGCN+No55475570.8258 ± 0.00550.7815 ± 0.0043Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
GCN+No55496050.8077 ± 0.00410.7586 ± 0.0032Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
GC-T+MCL(6.0)No40067040.7432 ± 0.00330.6989 ± 0.0037--
DeeperGCNNo23364210.7712 ± 0.00710.7313 ± 0.0078DeeperGCN: All You Need to Train Deeper GCNs
GIN+virtual nodeNo32880420.7037 ± 0.01070.6678 ± 0.0105How Powerful are Graph Neural Networks?
DeeperGCN+FLAGNo23364210.7752 ± 0.00690.7484 ± 0.0052Robust Optimization as Data Augmentation for Large-scale Graphs
GIN+FLAGNo18369420.6905 ± 0.00920.6465 ± 0.0070Robust Optimization as Data Augmentation for Large-scale Graphs
PAS+F2GNNNo163461660.8201 ± 0.00190.7720 ± 0.0023--
GIN+No81736050.8107 ± 0.00530.7786 ± 0.0095Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
PASNo37171600.7828 ± 0.00240.7523 ± 0.0028--
GCN+virtual node+FLAGNo19305370.6944 ± 0.00520.6638 ± 0.0055Robust Optimization as Data Augmentation for Large-scale Graphs
GIN+virtual node+FLAGNo32880420.7245 ± 0.01140.6789 ± 0.0079Robust Optimization as Data Augmentation for Large-scale Graphs
GINNo18369420.6892 ± 0.01000.6562 ± 0.0107How Powerful are Graph Neural Networks?
ExpC*+bag of tricksNo37586420.8140 ± 0.00280.7811 ± 0.0012--
GCN+virtual nodeNo19305370.6857 ± 0.00610.6511 ± 0.0048Semi-Supervised Classification with Graph Convolutional Networks
GPSNo34345330.80150.7556 ± 0.0027Recipe for a General, Powerful, Scalable Graph Transformer
0 of 18 row(s) selected.