HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
不正検出
Fraud Detection On Baf Base
Fraud Detection On Baf Base
評価指標
Recall @ 1% FPR
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Recall @ 1% FPR
Paper Title
LightGBM
25.2%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
FIGS
21%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
CART+RIFF
18.4%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
CART
16%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
FIGS+RIFF
15.8%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
FIGU+RIFF
15.5%
RIFF: Inducing Rules for Fraud Detection from Decision Trees
LightGBM
-
Exploring Neural Joint Activity in Spiking Neural Networks for Fraud Detection
1D-CSNN
-
Exploring Neural Joint Activity in Spiking Neural Networks for Fraud Detection
MLP–NN
-
Decoupling Decision-Making in Fraud Prevention through Classifier Calibration for Business Logic Action
CatBoost
-
Decoupling Decision-Making in Fraud Prevention through Classifier Calibration for Business Logic Action
1D-CSNN
-
Improving Fraud Detection with 1D-Convolutional Spiking Neural Networks Through Bayesian Optimization
LightGBM
-
Decoupling Decision-Making in Fraud Prevention through Classifier Calibration for Business Logic Action
0 of 12 row(s) selected.
Previous
Next