HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Few Shot 3D Point Cloud Classification
Few Shot 3D Point Cloud Classification On 4
Few Shot 3D Point Cloud Classification On 4
評価指標
Overall Accuracy
Standard Deviation
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Overall Accuracy
Standard Deviation
Paper Title
Repository
Point-LGMask
95.1
3.4
Point-LGMask: Local and Global Contexts Embedding for Point Cloud Pre-training with Multi-Ratio Masking
SSFSL+PointNet
50.10
5.0
Self-Supervised Few-Shot Learning on Point Clouds
ACT
95.6
2.8
Autoencoders as Cross-Modal Teachers: Can Pretrained 2D Image Transformers Help 3D Representation Learning?
PointGPT
96.1
2.8
PointGPT: Auto-regressively Generative Pre-training from Point Clouds
Point-MAE
95.0
3.0
Masked Autoencoders for Point Cloud Self-supervised Learning
GPr-Net + Hyp (512)
73.8
2.0
GPr-Net: Geometric Prototypical Network for Point Cloud Few-Shot Learning
CrossMoCo
91.0
3.4
CrossMoCo: Multi-modal Momentum Contrastive Learning for Point Cloud
GPr-Net + Euc (512)
63.3
2.2
GPr-Net: Geometric Prototypical Network for Point Cloud Few-Shot Learning
PCP-MAE
95.9
2.7
PCP-MAE: Learning to Predict Centers for Point Masked Autoencoders
OTMae3D
95.6
2.6
-
-
ReCon++
96.5
3.0
ShapeLLM: Universal 3D Object Understanding for Embodied Interaction
PointNet
35.20
13.5
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
PointNet++
18.80
7.0
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
PointCNN
49.95
7.2
PointCNN: Convolution On X-Transformed Points
GPr-Net + Euc (1024)
63.4
2.0
GPr-Net: Geometric Prototypical Network for Point Cloud Few-Shot Learning
DGCNN
16.9
1.5
Dynamic Graph CNN for Learning on Point Clouds
Point-RAE
95.8
3.0
Regress Before Construct: Regress Autoencoder for Point Cloud Self-supervised Learning
OcCo+PointNet
89.7
1.5
Unsupervised Point Cloud Pre-Training via Occlusion Completion
Point-M2AE
95.0
3.0
Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training
IDPT
95.4
-
Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models
0 of 31 row(s) selected.
Previous
Next