HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
顔認証
Face Verification On Ijb A
Face Verification On Ijb A
評価指標
TAR @ FAR=0.01
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
TAR @ FAR=0.01
Paper Title
Dual-Agent GANs
97.60%
Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis
PFEfuse + match
97.5%
Probabilistic Face Embeddings
SE-GV-4-g1
97.2%
GhostVLAD for set-based face recognition
L2-constrained softmax loss
97%
L2-constrained Softmax Loss for Discriminative Face Verification
VGGFace2_ft
96.8%
VGGFace2: A dataset for recognising faces across pose and age
StyleFNM
94.60%
Inclusive normalization of face images to passport format
Deep Residual Equivariant Mapping
94.40%
Pose-Robust Face Recognition via Deep Residual Equivariant Mapping
NAN
94.10%
Neural Aggregation Network for Video Face Recognition
Template adaptation
93.90%
Template Adaptation for Face Verification and Identification
All-in-one CNN
92.20%
An All-In-One Convolutional Neural Network for Face Analysis
FPN
90.1%
FacePoseNet: Making a Case for Landmark-Free Face Alignment
Triplet probabilistic embedding
90%
Triplet Probabilistic Embedding for Face Verification and Clustering
Synthesis as data augmentation
88.60%
Do We Really Need to Collect Millions of Faces for Effective Face Recognition?
DCNN
83.80%
Unconstrained Face Verification using Deep CNN Features
Deep multi-pose representations
78.70%
Face Recognition Using Deep Multi-Pose Representations
Deep CNN + COTS matcher
73.30%
Face Search at Scale: 80 Million Gallery
VGG + GANFaces
53.507%
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model
0 of 17 row(s) selected.
Previous
Next