HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
ドメイン適応
Domain Adaptation On Usps To Mnist
Domain Adaptation On Usps To Mnist
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy
Paper Title
FAMCD
98.75
Unsupervised domain adaptation using feature aligned maximum classifier discrepancy
FACT
98.6
FACT: Federated Adversarial Cross Training
SHOT
98.4
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
CyCleGAN (Light-weight Calibrator)
98.3
Light-weight Calibrator: a Separable Component for Unsupervised Domain Adaptation
3CATN
98.3
Cycle-consistent Conditional Adversarial Transfer Networks
Mean teacher
98.07
Self-ensembling for visual domain adaptation
CDAN
98.0
Conditional Adversarial Domain Adaptation
DRANet
97.8
DRANet: Disentangling Representation and Adaptation Networks for Unsupervised Cross-Domain Adaptation
DFA-MCD
96.6
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
DeepJDOT
96.4
DeepJDOT: Deep Joint Distribution Optimal Transport for Unsupervised Domain Adaptation
MCD+CAT
96.3
Cluster Alignment with a Teacher for Unsupervised Domain Adaptation
DFA-ENT
96.2
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
MCD
95.7
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
SRDA (RAN)
95.03
Learning Smooth Representation for Unsupervised Domain Adaptation
0 of 14 row(s) selected.
Previous
Next