HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
ドメイン適応
Domain Adaptation On Mnist To Usps
Domain Adaptation On Mnist To Usps
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy
Paper Title
FACT
98.8
FACT: Federated Adversarial Cross Training
FAMCD
98.72
Unsupervised domain adaptation using feature aligned maximum classifier discrepancy
DFA-MCD
98.6
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
Mean teacher
98.26
Self-ensembling for visual domain adaptation
DRANet
98.2
DRANet: Disentangling Representation and Adaptation Networks for Unsupervised Cross-Domain Adaptation
SHOT
98.0
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
DFA-ENT
97.9
Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment
CyCleGAN (Light-weight Calibrator)
97.1
Light-weight Calibrator: a Separable Component for Unsupervised Domain Adaptation
3CATN
96.1
Cycle-consistent Conditional Adversarial Transfer Networks
rRevGrad+CAT
96
Cluster Alignment with a Teacher for Unsupervised Domain Adaptation
DeepJDOT
95.7
DeepJDOT: Deep Joint Distribution Optimal Transport for Unsupervised Domain Adaptation
SRDA (RAN)
94.76
Learning Smooth Representation for Unsupervised Domain Adaptation
MCD
93.8
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
ADDN
90.1
Adversarial Discriminative Domain Adaptation
0 of 14 row(s) selected.
Previous
Next
Domain Adaptation On Mnist To Usps | SOTA | HyperAI超神経