HyperAI超神経

Dichotomous Image Segmentation On Dis Te4

評価指標

E-measure
HCE
MAE
S-Measure
max F-Measure
weighted F-measure

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名E-measureHCEMAES-Measuremax F-Measureweighted F-measure
hyperseg-patch-wise-hypernetwork-for-real0.84233310.0910.8020.7820.693
u-2-net-going-deeper-with-nested-u-structure0.84736530.0870.8070.7950.705
searching-for-mobilenetv30.84838170.0980.7700.7360.664
1908079190.85438640.0920.7920.7720.687
revisiting-image-pyramid-structure-for-high0.92622430.0460.8910.8920.840
icnet-for-real-time-semantic-segmentation-on0.83736900.0990.7760.7490.663
basnet-boundary-aware-salient-object0.84836010.0910.7940.7800.693
highly-accurate-dichotomous-image0.8728880.0720.830.8270.753
revisiting-image-pyramid-structure-for-high0.92623360.0420.9050.9050.848
u-net-convolutional-networks-for-biomedical0.82132180.102-0.7590.659
camouflaged-object-segmentation-with0.83838030.1070.7630.7310.647
global-context-aware-progressive-aggregation0.76736780.1270.7230.6700.559
concealed-object-detection0.82436830.1130.7440.6990.616
rethinking-atrous-convolution-for-semantic0.82037090.1110.7440.7150.621
pyramid-scene-parsing-network0.81538060.1070.7580.7250.630
bisenet-bilateral-segmentation-network-for0.78839990.1140.7550.7100.598
rethinking-bisenet-for-real-time-semantic0.84138190.1020.7620.7310.652
f3net-fusion-feedback-and-focus-for-salient0.82537600.1070.7520.7210.633
bilateral-reference-for-high-resolution0.93727460.0400.8980.9000.861
suppress-and-balance-a-simple-gated-network0.80336540.1090.7430.7290.625
multi-view-aggregation-network-for0.94423310.0410.9030.9120.857
patch-depth-fusion-dichotomous-image0.941-0.0370.9100.9110.867