HyperAI超神経

Crowd Counting On Ucf Qnrf

評価指標

MAE

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名MAE
cnn-based-cascaded-multi-task-learning-of252
deep-residual-learning-for-image-recognition190
context-aware-crowd-counting107
switching-convolutional-neural-network-for228
clip-ebc-clip-can-count-accurately-through80.5
rethinking-spatial-invariance-of-181.6
composition-loss-for-counting-density-map132
encoder-decoder-based-convolutional-neural85.6
improving-point-based-crowd-counting-and80.1
segnet-a-deep-convolutional-encoder-decoder270
clip-ebc-clip-can-count-accurately-through79.3
segmentation-guided-attention-network-for87.6
crowd-counting-and-individual-localization85.5
clip-ebc-clip-can-count-accurately-through76.06
densely-connected-convolutional-networks163
segmentation-guided-attention-network-for89.1
multi-source-multi-scale-counting-in315
single-image-crowd-counting-via-multi-column-1277
clip-ebc-clip-can-count-accurately-through77.2
clip-ebc-clip-can-count-accurately-through75.90
distribution-matching-for-crowd-counting85.6
clip-ebc-clip-can-count-accurately-through80.3