Complex Query Answering On Fb15K

評価指標

MRR 1p
MRR 2i
MRR 2p
MRR 2u
MRR 3i
MRR 3p
MRR ip
MRR pi
MRR up

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

モデル名
MRR 1p
MRR 2i
MRR 2p
MRR 2u
MRR 3i
MRR 3p
MRR ip
MRR pi
MRR up
Paper TitleRepository
QTO0.8950.8030.6740.7670.8360.5880.7400.7520.613Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization-
CQD-CO---------Complex Query Answering with Neural Link Predictors-
GNN-QE0.8850.7970.6930.7410.8350.5870.7040.6990.610Neural-Symbolic Models for Logical Queries on Knowledge Graphs-
CQDA0.8920.7610.6450.6840.7940.5790.7060.7010.579Adapting Neural Link Predictors for Data-Efficient Complex Query Answering-
GQE0.5460.3970.1530.2210.5140.1080.1910.2760.116Embedding Logical Queries on Knowledge Graphs-
Q2B0.680.5510.210.3510.6650.1420.2610.3940.167Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings-
CQD0.8920.7710.6530.7230.806-0.716--Complex Query Answering with Neural Link Predictors-
CQD-Beam---------Complex Query Answering with Neural Link Predictors-
BetaE0.6510.5580.2570.4010.6650.2470.2810.4390.252Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs-
0 of 9 row(s) selected.