HyperAI超神経

Click Through Rate Prediction On Avazu

評価指標

AUC
LogLoss

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名AUCLogLoss
optembed-learning-optimal-embedding-table-for0.79020.374
a-sparse-deep-factorization-machine-for0.78970.3748
dcnv3-towards-next-generation-deep-cross0.79700.3695
fi-gnn-modeling-feature-interactions-via0.77620.3825
feature-generation-by-convolutional-neural0.78830.3746
mmbattn-max-mean-and-bit-wise-attention-for0.7666-
flen-leveraging-field-for-scalable-ctr0.75-
cognitive-evolutionary-search-to-select0.80010.3678
mmbattn-max-mean-and-bit-wise-attention-for0.765-
memorize-factorize-or-be-naive-learning0.80620.3637
autoint-automatic-feature-interaction0.77520.3823
cetn-contrast-enhanced-through-network-for0.7962-
adaptive-factorization-network-learning0.7555-
memorize-factorize-or-be-naive-learning0.80600.3638
optimizing-feature-set-for-click-through-rate0.7950.3709