Chunking On Penn Treebank
評価指標
F1 score
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
モデル名 | F1 score | Paper Title | Repository |
---|---|---|---|
Flair embeddings | 96.72 | Contextual String Embeddings for Sequence Labeling | |
NCRF++ | 95.06 | NCRF++: An Open-source Neural Sequence Labeling Toolkit | |
Suzuki and Isozaki | 95.15 | - | - |
JMT | 95.77 | A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks | |
Low supervision | 95.57 | - | - |
BI-LSTM-CRF (Senna) (ours) | 94.46 | Bidirectional LSTM-CRF Models for Sequence Tagging | |
IntNet + BiLSTM-CRF | 95.29 | Learning Better Internal Structure of Words for Sequence Labeling | - |
ACE | 97.3 | Automated Concatenation of Embeddings for Structured Prediction |
0 of 8 row(s) selected.