HyperAI超神経

Atari Games On Atari 2600 Tutankham

評価指標

Score

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名Score
deep-reinforcement-learning-with-double-q45.6
モデル 298.2
dueling-network-architectures-for-deep218.4
prioritized-experience-replay204.6
generalized-data-distribution-iteration423.9
recurrent-experience-replay-in-distributed395.3
mastering-atari-go-chess-and-shogi-by491.48
dueling-network-architectures-for-deep245.9
noisy-networks-for-exploration269
evolving-simple-programs-for-playing-atari0
learning-values-across-many-orders-of183.9
gdi-rethinking-what-makes-reinforcement423.9
deep-reinforcement-learning-with-double-q92.2
asynchronous-methods-for-deep-reinforcement144.2
generalized-data-distribution-iteration418.2
a-distributional-perspective-on-reinforcement280.0
increasing-the-action-gap-new-operators-for245.22
deep-reinforcement-learning-with-double-q68.1
the-arcade-learning-environment-an-evaluation114.3
train-a-real-world-local-path-planner-in-one252.9
agent57-outperforming-the-atari-human2354.91
dueling-network-architectures-for-deep48.0
dna-proximal-policy-optimization-with-a-dual127
deep-reinforcement-learning-with-double-q108.6
impala-scalable-distributed-deep-rl-with292.11
massively-parallel-methods-for-deep118.5
self-imitation-learning340.5
distributed-prioritized-experience-replay272.6
evolution-strategies-as-a-scalable130.3
prioritized-experience-replay56.9
deep-attention-recurrent-q-network197
distributional-reinforcement-learning-with-1297
the-arcade-learning-environment-an-evaluation225.5
dueling-network-architectures-for-deep211.4
recurrent-rational-networks184
human-level-control-through-deep186.7
deep-exploration-via-bootstrapped-dqn214.8
asynchronous-methods-for-deep-reinforcement156.3
mastering-atari-with-discrete-world-models-1264
implicit-quantile-networks-for-distributional293
asynchronous-methods-for-deep-reinforcement26.1
policy-optimization-with-penalized-point241.21
recurrent-rational-networks179
online-and-offline-reinforcement-learning-by347.99