HyperAI超神経

Atari Games On Atari 2600 Robotank

評価指標

Score

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名Score
learning-values-across-many-orders-of64.3
fully-parameterized-quantile-function-for75.7
recurrent-experience-replay-in-distributed100.4
prioritized-experience-replay62.6
increasing-the-action-gap-new-operators-for69.31
dna-proximal-policy-optimization-with-a-dual64.8
the-arcade-learning-environment-an-evaluation50.4
impala-scalable-distributed-deep-rl-with12.96
dueling-network-architectures-for-deep65.1
prioritized-experience-replay56.2
mastering-atari-with-discrete-world-models-178
dueling-network-architectures-for-deep27.5
dueling-network-architectures-for-deep62.0
モデル 1412.4
asynchronous-methods-for-deep-reinforcement2.6
asynchronous-methods-for-deep-reinforcement32.8
deep-reinforcement-learning-with-double-q58.7
deep-reinforcement-learning-with-double-q24.7
train-a-real-world-local-path-planner-in-one65.8
deep-exploration-via-bootstrapped-dqn66.6
deep-reinforcement-learning-with-double-q59.1
generalized-data-distribution-iteration113.4
noisy-networks-for-exploration64
deep-reinforcement-learning-with-double-q63.9
evolution-strategies-as-a-scalable11.9
distributional-reinforcement-learning-with-159.4
distributed-prioritized-experience-replay73.8
implicit-quantile-networks-for-distributional62.5
human-level-control-through-deep51.6
evolving-simple-programs-for-playing-atari24.2
generalized-data-distribution-iteration108.2
massively-parallel-methods-for-deep61.8
mastering-atari-go-chess-and-shogi-by131.13
policy-optimization-with-penalized-point4.6
online-and-offline-reinforcement-learning-by100.59
asynchronous-methods-for-deep-reinforcement2.3
agent57-outperforming-the-atari-human127.32
a-distributional-perspective-on-reinforcement52.3
gdi-rethinking-what-makes-reinforcement108.2
self-imitation-learning10.5
the-arcade-learning-environment-an-evaluation28.7
dueling-network-architectures-for-deep65.3