Atari Games On Atari 2600 James Bond
評価指標
Score
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
比較表
モデル名 | Score |
---|---|
dueling-network-architectures-for-deep | 1312.5 |
prioritized-experience-replay | 3961.0 |
recurrent-rational-networks | 1122 |
recurrent-experience-replay-in-distributed | 25354.0 |
mastering-atari-with-discrete-world-models-1 | 40445 |
recurrent-rational-networks | 1137 |
evolving-simple-programs-for-playing-atari | 6130 |
dueling-network-architectures-for-deep | 835.5 |
prioritized-experience-replay | 5148.0 |
the-arcade-learning-environment-an-evaluation | 202.8 |
generalized-data-distribution-iteration | 594500 |
self-imitation-learning | 310.8 |
distributed-prioritized-experience-replay | 21322.5 |
implicit-quantile-networks-for-distributional | 35108 |
dna-proximal-policy-optimization-with-a-dual | 14102 |
agent57-outperforming-the-atari-human | 135784.96 |
dueling-network-architectures-for-deep | 812.0 |
impala-scalable-distributed-deep-rl-with | 601.50 |
soft-actor-critic-for-discrete-action | 68.3 |
gdi-rethinking-what-makes-reinforcement | 594500 |
massively-parallel-methods-for-deep | 444.0 |
online-and-offline-reinforcement-learning-by | 28626.23 |
fully-parameterized-quantile-function-for | 87291.7 |
deep-reinforcement-learning-with-double-q | 697.5 |
deep-reinforcement-learning-with-double-q | 768.5 |
asynchronous-methods-for-deep-reinforcement | 351.5 |
train-a-real-world-local-path-planner-in-one | 2237 |
asynchronous-methods-for-deep-reinforcement | 613.0 |
learning-values-across-many-orders-of | 507.5 |
increasing-the-action-gap-new-operators-for | 772.09 |
human-level-control-through-deep | 576.7 |
deep-exploration-via-bootstrapped-dqn | 1663.5 |
mastering-atari-go-chess-and-shogi-by | 41063.25 |
asynchronous-methods-for-deep-reinforcement | 541.0 |
policy-optimization-with-penalized-point | 358.54 |
the-arcade-learning-environment-an-evaluation | 330 |
distributional-reinforcement-learning-with-1 | 4703 |
a-distributional-perspective-on-reinforcement | 1909.0 |
dueling-network-architectures-for-deep | 1358.0 |
deep-reinforcement-learning-with-double-q | 585.0 |
モデル 41 | 354.1 |
deep-reinforcement-learning-with-double-q | 573.0 |
generalized-data-distribution-iteration | 620780 |
increasing-the-action-gap-new-operators-for | 848.46 |
curl-contrastive-unsupervised-representations | - |