HyperAI超神経

Atari Games On Atari 2600 James Bond

評価指標

Score

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名Score
dueling-network-architectures-for-deep1312.5
prioritized-experience-replay3961.0
recurrent-rational-networks1122
recurrent-experience-replay-in-distributed25354.0
mastering-atari-with-discrete-world-models-140445
recurrent-rational-networks1137
evolving-simple-programs-for-playing-atari6130
dueling-network-architectures-for-deep835.5
prioritized-experience-replay5148.0
the-arcade-learning-environment-an-evaluation202.8
generalized-data-distribution-iteration594500
self-imitation-learning310.8
distributed-prioritized-experience-replay21322.5
implicit-quantile-networks-for-distributional35108
dna-proximal-policy-optimization-with-a-dual14102
agent57-outperforming-the-atari-human135784.96
dueling-network-architectures-for-deep812.0
impala-scalable-distributed-deep-rl-with601.50
soft-actor-critic-for-discrete-action68.3
gdi-rethinking-what-makes-reinforcement594500
massively-parallel-methods-for-deep444.0
online-and-offline-reinforcement-learning-by28626.23
fully-parameterized-quantile-function-for87291.7
deep-reinforcement-learning-with-double-q697.5
deep-reinforcement-learning-with-double-q768.5
asynchronous-methods-for-deep-reinforcement351.5
train-a-real-world-local-path-planner-in-one2237
asynchronous-methods-for-deep-reinforcement613.0
learning-values-across-many-orders-of507.5
increasing-the-action-gap-new-operators-for772.09
human-level-control-through-deep576.7
deep-exploration-via-bootstrapped-dqn1663.5
mastering-atari-go-chess-and-shogi-by41063.25
asynchronous-methods-for-deep-reinforcement541.0
policy-optimization-with-penalized-point358.54
the-arcade-learning-environment-an-evaluation330
distributional-reinforcement-learning-with-14703
a-distributional-perspective-on-reinforcement1909.0
dueling-network-architectures-for-deep1358.0
deep-reinforcement-learning-with-double-q585.0
モデル 41354.1
deep-reinforcement-learning-with-double-q573.0
generalized-data-distribution-iteration620780
increasing-the-action-gap-new-operators-for848.46
curl-contrastive-unsupervised-representations-