HyperAI超神経

Atari Games On Atari 2600 Bank Heist

評価指標

Score

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名Score
deep-reinforcement-learning-with-double-q1004.6
improving-computational-efficiency-in-visual276.6
noisy-networks-for-exploration1318
online-and-offline-reinforcement-learning-by27219.8
the-arcade-learning-environment-an-evaluation190.8
dna-proximal-policy-optimization-with-a-dual1286
dueling-network-architectures-for-deep1030.6
massively-parallel-methods-for-deep399.4
deep-reinforcement-learning-with-double-q312.7
dueling-network-architectures-for-deep1129.3
policy-optimization-with-penalized-point1212.23
mastering-atari-with-discrete-world-models-11126
learning-values-across-many-orders-of1103.3
モデル 1467.4
deep-reinforcement-learning-with-double-q886.0
deep-exploration-via-bootstrapped-dqn1208
increasing-the-action-gap-new-operators-for633.63
curl-contrastive-unsupervised-representations193.7
discrete-latent-space-world-models-for121.6
implicit-quantile-networks-for-distributional1416
the-reactor-a-fast-and-sample-efficient-actor1259.7
agent57-outperforming-the-atari-human23071.5
a-distributional-perspective-on-reinforcement976.0
evolution-strategies-as-a-scalable225.0
distributed-prioritized-experience-replay1716.4
asynchronous-methods-for-deep-reinforcement932.8
train-a-real-world-local-path-planner-in-one1340.9
evolving-simple-programs-for-playing-atari148
the-arcade-learning-environment-an-evaluation497.8
human-level-control-through-deep429.7
prioritized-experience-replay876.6
impala-scalable-distributed-deep-rl-with1223.15
deep-reinforcement-learning-with-double-q455.0
mastering-atari-go-chess-and-shogi-by1278.98
generalized-data-distribution-iteration1380
dueling-network-architectures-for-deep1503.1
dueling-network-architectures-for-deep1611.9
distributional-reinforcement-learning-with-11249
asynchronous-methods-for-deep-reinforcement946.0
recurrent-experience-replay-in-distributed24235.9
generalized-data-distribution-iteration1401
prioritized-experience-replay1054.6
self-imitation-learning1137.8
increasing-the-action-gap-new-operators-for874.99
asynchronous-methods-for-deep-reinforcement970.1