HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
システム
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ログイン
ログイン
ホーム
SOTA
3D Point Cloud Classification
3D Point Cloud Classification On Scanobjectnn
3D Point Cloud Classification On Scanobjectnn
評価指標
Mean Accuracy
OBJ-BG (OA)
OBJ-ONLY (OA)
Overall Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Mean Accuracy
OBJ-BG (OA)
OBJ-ONLY (OA)
Overall Accuracy
Paper Title
Repository
point2vec
86.0
91.2
90.4
87.5
Point2Vec for Self-Supervised Representation Learning on Point Clouds
ULIP-2 + Point-BERT
-
-
-
89.0
ULIP-2: Towards Scalable Multimodal Pre-training for 3D Understanding
Point-BERT
-
87.43
88.12
83.1
Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling
Point-PN
-
-
-
87.1
Parameter is Not All You Need: Starting from Non-Parametric Networks for 3D Point Cloud Analysis
ULIP-2 + PointNeXt (no voting)
90.3
-
-
90.8
ULIP-2: Towards Scalable Multimodal Pre-training for 3D Understanding
PointNet
63.4
-
-
68.2
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
PatchAugment
79.7
-
-
81.0
PatchAugment: Local Neighborhood Augmentation in Point Cloud Classification
Mamba3D (no voting)
-
92.94
92.08
91.81
Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model
Point-TnT
81.0
-
-
83.5
Points to Patches: Enabling the Use of Self-Attention for 3D Shape Recognition
Point-JEPA
-
92.9±0.4
-
-
Point-JEPA: A Joint Embedding Predictive Architecture for Self-Supervised Learning on Point Cloud
-
PointNeXt+HyCoRe
87.0
-
-
88.3
Rethinking the compositionality of point clouds through regularization in the hyperbolic space
RepSurf-U
-
-
-
84.6
Surface Representation for Point Clouds
ACT
-
-
-
89.17
Autoencoders as Cross-Modal Teachers: Can Pretrained 2D Image Transformers Help 3D Representation Learning?
ReCon (no voting)
-
95.18
93.29
90.63
Contrast with Reconstruct: Contrastive 3D Representation Learning Guided by Generative Pretraining
SimpleView
-
-
-
80.5
Revisiting Point Cloud Classification with a Simple and Effective Baseline
I2P-MAE (no voting)
-
94.15
91.57
90.11
Learning 3D Representations from 2D Pre-trained Models via Image-to-Point Masked Autoencoders
KPConvX-L
88.1
-
-
89.3
KPConvX: Modernizing Kernel Point Convolution with Kernel Attention
-
ULIP + PointBERT
-
-
-
86.4
ULIP: Learning a Unified Representation of Language, Images, and Point Clouds for 3D Understanding
RepSurf-U (2x)
-
-
-
86.0
Surface Representation for Point Clouds
PointNeXt
86.8
-
-
88.2
PointNeXt: Revisiting PointNet++ with Improved Training and Scaling Strategies
0 of 75 row(s) selected.
Previous
Next