HyperAI超神経

3D Part Segmentation On Shapenet Part

評価指標

Class Average IoU
Instance Average IoU

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名Class Average IoUInstance Average IoU
interpolated-convolutional-networks-for-3d84.086.3
point-voxel-transformer-an-efficient-approach-86.5
point-jepa-a-joint-embedding-predictive85.8±0.1-
syncspeccnn-synchronized-spectral-cnn-for-3d82.084.7
pct-point-cloud-transformer-86.4
densepoint-learning-densely-contextual84.286.4
walk-in-the-cloud-learning-curves-for-point-86.8
3d-jepa-a-joint-embedding-predictive86.4184.93
kpconv-flexible-and-deformable-convolution85.186.4
exploiting-local-geometry-for-feature-and-89.1
partnet-a-recursive-part-decomposition84.1-
point2vec-for-self-supervised-representation84.686.3
relation-shape-convolutional-neural-network-86.2
sgpn-similarity-group-proposal-network-for-3d-85.8
point2sequence-learning-the-shape-85.2
pointnet-deep-learning-on-point-sets-for-3d-83.7
モデル 1784.886.6
pointgrid-a-deep-network-for-3d-shape82.286.4
deltaconv-anisotropic-point-cloud-learning-86.9
generalizing-discrete-convolutions-for83.485.8
pointnet-deep-hierarchical-feature-learning81.985.1
structural-relational-reasoning-of-point82.285.3
anisotropic-separable-set-abstraction-for-86.1
octree-guided-cnn-with-spherical-kernels-for83.486.8
point-cloud-pre-training-by-mixing-and-85.5
point-transformer-183.786.6
learning-geometry-disentangled-representation85.086.5
0-4-dualities-87.0
pointcnn-convolution-on-mathcalx-transformed84.686.14
point-planenet-plane-kernel-based82.585.1
3d-point-cloud-classification-and-84.3
self-positioning-point-based-transformer-for85.487.2
point-transformer-85.9
so-net-self-organizing-network-for-point-84.9
convolution-in-the-cloud-learning-deformable82.185.1
exploiting-inductive-bias-in-transformer-for-86.2
interpretable-edge-enhancement-and85.287.1
3d-u-net-learning-dense-volumetric-84.6
point-voxel-cnn-for-efficient-3d-deep-86.2
splatnet-sparse-lattice-networks-for-point82.084.6
take-a-photo-3d-to-2d-generative-pre-training85.286.9
rethinking-masked-representation-learning-for85.186.8
adacrossnet-adaptive-dynamic-loss-weighting85.1-
sagemix-saliency-guided-mixup-for-point-85.7
pointconv-deep-convolutional-networks-on-3d82.885.7
dspoint-dual-scale-point-cloud-recognition83.985.8
odfnet-using-orientation-distribution83.386.5
spidercnn-deep-learning-on-point-sets-with82.485.3
sagemix-saliency-guided-mixup-for-point-85.4
beyond-local-patches-preserving-global-local-88.1
pointnext-revisiting-pointnet-with-improved85.287.1
dynamic-graph-cnn-for-learning-on-point-85.2
fg-net-fast-large-scale-lidar-point87.786.6
escape-from-cells-deep-kd-networks-for-the77.482.3
submanifold-sparse-convolutional-networks-86.0
agcn-adversarial-graph-convolutional-network85.786.9
dense-resolution-network-for-point-cloud83.786.4
spherical-fractal-convolutional-neural82.785.4
point-is-a-vector-a-feature-representation-in-86.9
ckconv-learning-feature-voxelization-for-86.7
spherical-kernel-for-efficient-graph84.986.8
attention-based-point-cloud-edge-sampling83.785.8
beyond-first-impressions-integrating-joint82.1-
attention-based-point-cloud-edge-sampling83.185.6
avs-net-point-sampling-with-adaptive-voxel85.787.3
deltaconv-anisotropic-point-cloud-learning-86.6
p2p-tuning-pre-trained-image-models-for-point-86.5