HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
3D Dense Shape Correspondence
3D Dense Shape Correspondence On Shrec 19
3D Dense Shape Correspondence On Shrec 19
評価指標
Accuracy at 1%
Euclidean Mean Error (EME)
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy at 1%
Euclidean Mean Error (EME)
Paper Title
Repository
CorrNet3D (Trained on Surreal)
6.0
6.9
CorrNet3D: Unsupervised End-to-end Learning of Dense Correspondence for 3D Point Clouds
CorrNet3D
0.4
33.8
CorrNet3D: Unsupervised End-to-end Learning of Dense Correspondence for 3D Point Clouds
Elementery Structures(Trained on Surreal)
2.3
7.6
Learning elementary structures for 3D shape generation and matching
DPC
15.3
5.6
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction
SE-ORNet
17.5
5.1
SE-ORNet: Self-Ensembling Orientation-aware Network for Unsupervised Point Cloud Shape Correspondence
Diff-FMaps (Trained on Surreal)
4.0
7.1
Correspondence Learning via Linearly-invariant Embedding
TANet (Trained on Surreal)
21.5
4.5
Unsupervised Template-assisted Point Cloud Shape Correspondence Network
-
DPC (Trained on Surreal)
17.7
6.1
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction
3DCODED (Trained on Surreal)
2.1
8.1
3D-CODED : 3D Correspondences by Deep Deformation
SE-ORNet (Trained on Surreal)
21.5
4.6
SE-ORNet: Self-Ensembling Orientation-aware Network for Unsupervised Point Cloud Shape Correspondence
Diffusion 3D Features (Zero-shot)
26.4
1.7
Diffusion 3D Features (Diff3F): Decorating Untextured Shapes with Distilled Semantic Features
0 of 11 row(s) selected.
Previous
Next