Command Palette

Search for a command to run...

4ヶ月前

スロットゲート付きモデリングによる同時スロットフィリングと意図予測

{Yun-Nung Chen Keng-Wei Hsu Tsung-Chieh Chen Chih-Li Huo Yun-Kai Hsu Chih-Wen Goo Guang Gao}

スロットゲート付きモデリングによる同時スロットフィリングと意図予測

要約

注意機構を備えた再帰型ニューラルネットワークモデルは、意図検出とスロットフィリングを統合的に処理する上で最先端の性能を達成しているが、その際の注意重みは独立して学習されている。本研究では、スロットと意図の間に強い関係性が存在することに着目し、意図とスロットの注意ベクトル間の関係を学習するための「スロットゲート」を提案する。これにより、グローバル最適化によってより優れた意味枠(semantic frame)の推定が可能となる。実験結果から、提案モデルはベンチマークとして用いられるATISおよびSnipsデータセットにおいて、それぞれ従来の注意機構モデルと比較して、文単位の意味枠精度で4.2%および1.9%の相対的な改善を達成したことが明らかになった。

ベンチマーク

ベンチマーク方法論指標
intent-detection-on-atisSlot-Gated BLSTM with Attension
Accuracy: 93.6
intent-detection-on-snipsSlot-Gated BLSTM with Attension
Accuracy: 97.00
slot-filling-on-atisSlot-Gated BLSTM with Attension
F1: 0.948
slot-filling-on-snipsSlot-Gated BLSTM with Attension
F1: 88.8

AI で AI を構築

アイデアからローンチまで — 無料の AI 共同コーディング、すぐに使える環境、最適価格の GPU で AI 開発を加速。

AI 共同コーディング
すぐに使える GPU
最適価格
今すぐ始める

Hyper Newsletters

最新情報を購読する
北京時間 毎週月曜日の午前9時 に、その週の最新情報をメールでお届けします
メール配信サービスは MailChimp によって提供されています
スロットゲート付きモデリングによる同時スロットフィリングと意図予測 | 論文 | HyperAI超神経