Visual Object Tracking On Uav123
Métriques
AUC
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | AUC |
---|---|
artrackv2-prompting-autoregressive-tracker | 0.717 |
joint-feature-learning-and-relation-modeling | 0.707 |
tracking-meets-lora-faster-training-larger | 0.725 |
tracking-meets-lora-faster-training-larger | 0.739 |
learning-target-candidate-association-to-keep | 0.697 |
seqtrack-sequence-to-sequence-learning-for | 0.685 |
aiatrack-attention-in-attention-for | 0.706 |
target-transformed-regression-for-accurate | 0.669 |
how-to-train-your-energy-based-model-for | 0.672 |
learning-historical-status-prompt-for | 0.705 |
a-distilled-model-for-tracking-and-tracker | 0.679 |
neighbortrack-improving-single-object | 0.725 |
dctd-deep-conditional-target-densities-for | 0.672 |
autoregressive-visual-tracking | 0.712 |
mixformer-end-to-end-tracking-with-iterative-1 | 0.704 |