HyperAI

Video Salient Object Detection On Davis 2016

Métriques

AVERAGE MAE
MAX F-MEASURE
S-Measure

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleAVERAGE MAEMAX F-MEASURES-Measure
semi-supervised-video-salient-object0.0280.8590.884
saliency-aware-geodesic-video-object0.105-0.664
a-unified-transformer-framework-for-group0.0150.9060.918
real-time-salient-object-detection-with-a0.174-0.566
minimum-barrier-salient-object-detection-at0.173-0.600
time-mapping-using-space-time-saliency0.185-0.574
unsupervised-video-object-segmentation-with-10.0310.8620.887
flow-guided-recurrent-neural-encoder-for0.0430.7830.838
transforming-static-images-using-generative0.0100.9390.945
pyramid-dilated-deeper-convlstm-for-video0.028-0.882
shifting-more-attention-to-video-salient0.0280.8610.893