Trajectory Prediction On Stanford Drone
Métriques
ADE (8/12) @K=5
FDE(8/12) @K=5
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | ADE (8/12) @K=5 | FDE(8/12) @K=5 |
---|---|---|
tnt-target-driven-trajectory-prediction | 12.23 | 21.16 |
from-goals-waypoints-paths-to-long-term-human | - | - |
conditional-generative-neural-system-for | - | - |
sophie-an-attentive-gan-for-predicting-paths | 16.27 | 29.38 |
the-garden-of-forking-paths-towards-multi | - | - |
dag-net-double-attentive-graph-neural-network | - | - |
smemo-social-memory-for-trajectory | 11.64 | 21.12 |
social-implicit-rethinking-trajectory | - | - |
desire-distant-future-prediction-in-dynamic | 19.25 | 34.05 |
view-vertically-a-hierarchical-network-for | - | - |
social-lstm-human-trajectory-prediction-in | 31.19 | 56.97 |
remember-intentions-retrospective-memory | - | - |
end-to-end-trajectory-distribution-prediction | - | - |
human-trajectory-prediction-via-neural-social | - | - |
sophie-an-attentive-gan-for-predicting-paths | - | - |
trajectory-forecasts-in-unknown-environments | - | - |
conditional-flow-variational-autoencoders-for | - | - |
progressive-pretext-task-learning-for-human | - | - |
evolvegraph-heterogeneous-multi-agent-multi | - | - |
social-gan-socially-acceptable-trajectories | 27.25 | 41.44 |
social-ways-learning-multi-modal | - | - |
mantra-memory-augmented-networks-for-multiple-1 | 13.51 | 27.34 |
simaug-learning-robust-representations-from | - | - |
it-is-not-the-journey-but-the-destination | - | - |