HyperAI

Traffic Prediction On Pems Bay

Métriques

MAE @ 12 step

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleMAE @ 12 step
spatial-temporal-attention-wavenet-a-deep1.89
spatio-temporal-adaptive-embedding-makes1.91
predicting-traffic-signals-on-transportation-
spatio-temporal-decoupled-masked-pre-training1.77
spatio-temporal-meta-graph-learning-for1.88
1906001211.95
rgdan-a-random-graph-diffusion-attention1.86
spatio-temporal-graph-structure-learning-for2.03
conditional-temporal-neural-processes-with1.91
spatio-temporal-graph-mixformer-for-traffic1.857
gman-a-graph-multi-attention-network-for1.92
pre-training-enhanced-spatial-temporal-graph1.79
decoupled-dynamic-spatial-temporal-graph1.85
t-graphormer-using-transformers-for1.63
diffusion-convolutional-recurrent-neural2.07
a-time-series-is-worth-five-experts-11.69