Single Image Deraining On Rain100H
Métriques
PSNR
SSIM
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | PSNR | SSIM |
---|---|---|
hinet-half-instance-normalization-network-for | 30.65 | 0.894 |
multi-scale-progressive-fusion-network-for | 28.66 | 0.86 |
mixed-hierarchy-network-for-image-restoration | 30.34 | - |
uncertainty-guided-multi-scale-residual-1 | - | 0.832 |
progressive-image-deraining-networks-a-better | 29.46 | 0.899 |
multi-stage-progressive-image-restoration | 30.41 | 0.89 |
a-mountain-shaped-single-stage-network-for | 30.64 | 0.892 |
maxim-multi-axis-mlp-for-image-processing | - | 0.903 |
image-restoration-through-generalized | 34.56 | 0.9414 |
controlling-vision-language-models-for | 33.91 | 0.926 |
recurrent-squeeze-and-excitation-context | 26.36 | 0.786 |
image-restoration-with-mean-reverting | 31.65 | 0.9041 |
mara-net-single-image-deraining-network-with | 30.70 | 0.922 |
restormer-efficient-transformer-for-high | 31.46 | 0.904 |
clearing-the-skies-a-deep-network | - | 0.592 |
semi-supervised-cnn-for-single-image-rain | 16.56 | 0.486 |
density-aware-single-image-de-raining-using-a | - | 0.524 |