HyperAI

Semi Supervised Semantic Segmentation On 24

Métriques

mIOU (1% Test set)
mIoU (1% Labels)
mIoU (10% Labels)
mIoU (20% Labels)
mIoU (50% Labels)

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
mIOU (1% Test set)
mIoU (1% Labels)
mIoU (10% Labels)
mIoU (20% Labels)
mIoU (50% Labels)
Paper TitleRepository
360° from a Single Camera: A Few-Shot Approach for LiDAR Segmentation (All)57.759.562.464.266.1360$^circ$ from a Single Camera: A Few-Shot Approach for LiDAR Segmentation-
PLE (Voxel)-61.163.164.164.3Learning from Spatio-temporal Correlation for Semi-Supervised LiDAR Semantic Segmentation
MeanTeacher (Range View)-37.553.156.157.4Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
LaserMix (Voxel)-50.660.061.962.3LaserMix for Semi-Supervised LiDAR Semantic Segmentation
PLE (CENet, Range view)-51.5---Learning from Spatio-temporal Correlation for Semi-Supervised LiDAR Semantic Segmentation
CutMix-Seg (Range View)-37.454.356.657.6Semi-supervised semantic segmentation needs strong, varied perturbations
CPS (Range View)-36.552.356.357.4Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
SAPCA (Cylinder3D)-50.964.0-64.9What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation-
MeanTeacher (Voxel)-45.457.159.260.0Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
CBST (Range View)-39.953.456.156.9Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training
LaserMix (Voxel)-----Learning from Spatio-temporal Correlation for Semi-Supervised LiDAR Semantic Segmentation
LaserMix (Range View)-43.458.859.461.4LaserMix for Semi-Supervised LiDAR Semantic Segmentation
0 of 12 row(s) selected.