HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Semantic Textual Similarity
Semantic Textual Similarity On Sts16
Semantic Textual Similarity On Sts16
Métriques
Spearman Correlation
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Spearman Correlation
Paper Title
Repository
PromptEOL+CSE+LLaMA-30B
0.8627
Scaling Sentence Embeddings with Large Language Models
DiffCSE-RoBERTa-base
0.8212
DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings
Trans-Encoder-BERT-base-bi (unsup.)
0.8305
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations
Trans-Encoder-RoBERTa-large-cross (unsup.)
0.8503
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations
Trans-Encoder-BERT-large-bi (unsup.)
0.8481
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations
BERTlarge-flow (target)
0.7763
On the Sentence Embeddings from Pre-trained Language Models
-
Trans-Encoder-RoBERTa-base-cross (unsup.)
0.8377
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations
PromptEOL+CSE+OPT-13B
0.8590
Scaling Sentence Embeddings with Large Language Models
AnglE-LLaMA-13B
0.8700
AnglE-optimized Text Embeddings
PromCSE-RoBERTa-large (0.355B)
0.8496
Improved Universal Sentence Embeddings with Prompt-based Contrastive Learning and Energy-based Learning
IS-BERT-NLI
0.7016
An Unsupervised Sentence Embedding Method by Mutual Information Maximization
AnglE-LLaMA-7B
0.8691
AnglE-optimized Text Embeddings
Mirror-RoBERTa-base (unsup.)
0.78
Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders
DiffCSE-BERT-base
0.8054
DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings
PromptEOL+CSE+OPT-2.7B
0.8591
Scaling Sentence Embeddings with Large Language Models
Dino (STSb/̄
0.7718
Generating Datasets with Pretrained Language Models
SimCSE-RoBERTalarge
0.8393
SimCSE: Simple Contrastive Learning of Sentence Embeddings
AnglE-LLaMA-7B-v2
0.8700
AnglE-optimized Text Embeddings
SRoBERTa-NLI-large
0.7682
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Mirror-BERT-base (unsup.)
0.743
Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders
0 of 20 row(s) selected.
Previous
Next