Robotic Grasping On Cornell Grasp Dataset 1
Métriques
5 fold cross validation
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | 5 fold cross validation |
---|---|
deep-learning-for-detecting-robotic-grasps | 60.5 |
real-time-grasp-detection-using-convolutional | 88 |
robotic-grasp-detection-using-deep | 89.21 |
end-to-end-trainable-deep-neural-network-for | 98.2 |
real-world-multiobject-multigrasp-detection | 96 |
antipodal-robotic-grasping-using-generative | 97.7 |
closing-the-loop-for-robotic-grasping-a-real | 73 |