Collaborative Filtering On Movielens 10M
Métriques
RMSE
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | RMSE |
---|---|
on-the-difficulty-of-evaluating-baselines-a | 0.772 |
dictionary-learning-for-massive-matrix | 0.799 |
on-the-difficulty-of-evaluating-baselines-a | 0.7523 |
on-the-difficulty-of-evaluating-baselines-a | 0.7563 |
hybrid-recommender-system-based-on | 0.7954 |
on-the-difficulty-of-evaluating-baselines-a | 0.823 |
svd-ae-simple-autoencoders-for-collaborative | - |
hybrid-recommender-system-based-on | 0.7767 |
a-neural-autoregressive-approach-to | 0.771 |
kernelized-synaptic-weight-matrices | 0.769 |
exploring-the-multimodal-information-from | - |
on-the-difficulty-of-evaluating-baselines-a | 0.7485 |
a-federated-graph-neural-network-framework | 0.793 |
fedgnn-federated-graph-neural-network-for | 0.803 |
graph-convolutional-matrix-completion | 0.777 |
mixture-rank-matrix-approximation-for | 0.7634 |
autorec-autoencoders-meet-collaborative | 0.782 |