HyperAI
HyperAI
Accueil
Actualités
Articles de recherche
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Rechercher sur le site...
⌘
K
Accueil
SOTA
Systèmes de recommandation
Collaborative Filtering On Movielens 100K
Collaborative Filtering On Movielens 100K
Métriques
Precision
RMSE (u1 Splits)
Recall
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Precision
RMSE (u1 Splits)
Recall
Paper Title
Repository
GHRS
0.771
0.887
0.799
GHRS: Graph-based Hybrid Recommendation System with Application to Movie Recommendation
Self-Supervised Exchangeable Model
-
0.91
-
Deep Models of Interactions Across Sets
IGMC
-
0.905
-
Inductive Matrix Completion Based on Graph Neural Networks
GMC
-
0.996
-
Matrix Completion on Graphs
GLocal-K
-
0.8889
-
GLocal-K: Global and Local Kernels for Recommender Systems
sRGCNN
-
0.929
-
Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks
FedGNN
-
-
-
FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation
-
GraphRec + Feat
-
0.897
-
Attribute-aware non-linear co-embeddings of graph features
-
GC-MC
-
0.905
-
Graph Convolutional Matrix Completion
Factorized EAE
-
0.920
-
Deep Models of Interactions Across Sets
GraphRec
-
0.904
-
Attribute-aware non-linear co-embeddings of graph features
-
GRALS
-
0.945
-
Collaborative Filtering with Graph Information: Consistency and Scalable Methods
-
FedPerGNN
-
-
-
A federated graph neural network framework for privacy-preserving personalization
-
GRAEM / KPMF
-
0.9174
-
Scalable Probabilistic Matrix Factorization with Graph-Based Priors
GC-MC
-
0.910
-
Graph Convolutional Matrix Completion
MG-GAT
-
0.890
-
Interpretable Recommender System With Heterogeneous Information: A Geometric Deep Learning Perspective
-
WMLFF
-
0.928
-
Weighted Multi-Level Feature Factorization for App ads CTR and installation prediction
0 of 17 row(s) selected.
Previous
Next