HyperAIHyperAI

Reading Comprehension On Race

Métriques

Accuracy
Accuracy (High)
Accuracy (Middle)

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
Accuracy
Accuracy (High)
Accuracy (Middle)
Paper TitleRepository
B10-10-1085.784.488.8Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing-
Megatron-BERT89.588.691.8Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism-
GPT-3 175B (zero-shot)-45.5-Language Models are Few-Shot Learners-
LLaMA 33B (zero-shot)-48.364.1LLaMA: Open and Efficient Foundation Language Models-
LLaMA 65B (zero-shot)-51.667.9LLaMA: Open and Efficient Foundation Language Models-
RoBERTa83.281.386.5RoBERTa: A Robustly Optimized BERT Pretraining Approach-
Megatron-BERT (ensemble)90.990.093.1Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism-
DeBERTalarge86.8--DeBERTa: Decoding-enhanced BERT with Disentangled Attention-
GPT-3 175B (0-shot)--58.4Language Models are Few-Shot Learners-
ALBERT (Ensemble)91.4--Improving Machine Reading Comprehension with Single-choice Decision and Transfer Learning-
BLOOM 176B (one-shot)-39.1452.3BloombergGPT: A Large Language Model for Finance-
GPT-NeoX (one-shot)-34.3341.23BloombergGPT: A Large Language Model for Finance-
OPT 66B (one-shot)-37.0247.42BloombergGPT: A Large Language Model for Finance-
Orca 2-7B80.79--Orca 2: Teaching Small Language Models How to Reason-
PaLM 8B (zero-shot)-42.357.9PaLM: Scaling Language Modeling with Pathways-
XLNet-84.088.6XLNet: Generalized Autoregressive Pretraining for Language Understanding-
Bloomberg GPT (one-shot)-41.7454.32BloombergGPT: A Large Language Model for Finance-
PaLM 540B (zero-shot)-49.168.1PaLM: Scaling Language Modeling with Pathways-
LLaMA 7B (zero-shot)-46.961.1LLaMA: Open and Efficient Foundation Language Models-
Orca 2-13B82.87--Orca 2: Teaching Small Language Models How to Reason-
0 of 24 row(s) selected.
Reading Comprehension On Race | SOTA | HyperAI