HyperAI

Pose Estimation On Coco Test Dev

Métriques

AP
AP50
AP75
APL
APM
AR

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
AP
AP50
AP75
APL
APM
AR
Paper TitleRepository
Flow-based (ResNet-152)73.791.981.18070.379Simple Baselines for Human Pose Estimation and Tracking
Mask-RCNN63.187.368.771.4--Mask R-CNN
PPE (ResNeXt-101)75.790.376.379.580.7-Deep Multi-Task Networks For Occluded Pedestrian Pose Estimation-
OmniPose (WASPv2)76.492.683.782.672.681.2OmniPose: A Multi-Scale Framework for Multi-Person Pose Estimation
Faster R-CNN (ImageNet+300M)64.485.770.769.861.8-Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
Lite-HRNet-3069.790.777.575.066.975.4Lite-HRNet: A Lightweight High-Resolution Network
MIPNet75.792.483.381.271.480.5Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation
TFPose (ND=6 ResNet-50)72.290.980.178.869.1-TFPose: Direct Human Pose Estimation with Transformers-
PoseFix74.791.281.981.271.179.9PoseFix: Model-agnostic General Human Pose Refinement Network
MSPN76.193.483.881.572.381.6Rethinking on Multi-Stage Networks for Human Pose Estimation
TransPose-H-A67592.282.381.171.3-TransPose: Keypoint Localization via Transformer
HRNet-W48+UDP76.592.78473.082.481.6The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation
HRNet-W48+DARK77.492.684.683.773.682.3Distribution-Aware Coordinate Representation for Human Pose Estimation
CMU-Pose61.884.967.568.257.166.5Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
ViTPose (ViTAE-G, ensemble)81.195.088.286.077.885.6ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
ViTPose (ViTAE-G)80.994.888.185.977.585.4ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
KAPAO-L70.391.277.876.866.377.7Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation
RMPE++72.389.279.178.668.0-RMPE: Regional Multi-person Pose Estimation
CPN72.191.480.077.2-78.5Cascaded Pyramid Network for Multi-Person Pose Estimation
yolopose-90.3----YOLO-Pose: Enhancing YOLO for Multi Person Pose Estimation Using Object Keypoint Similarity Loss
0 of 46 row(s) selected.