Open Vocabulary Panoptic Segmentation On
Métriques
PQ
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | PQ | Paper Title | Repository |
---|---|---|---|
PosSAM | 29.2 | PosSAM: Panoptic Open-vocabulary Segment Anything | |
ODISE (Label) | 22.6 | Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models | |
ODISE(Caption) | 23.4 | Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models | |
MAFT+ | 27.1 | Collaborative Vision-Text Representation Optimizing for Open-Vocabulary Segmentation | |
MaskCLIP | 15.1 | Extract Free Dense Labels from CLIP | |
CLIPSelf | 23.7 | CLIPSelf: Vision Transformer Distills Itself for Open-Vocabulary Dense Prediction | - |
FreeSeg | 16.3 | FreeSeg: Unified, Universal and Open-Vocabulary Image Segmentation | - |
FC-CLIP | 26.8 | Convolutions Die Hard: Open-Vocabulary Segmentation with Single Frozen Convolutional CLIP |
0 of 8 row(s) selected.