HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Inférence de langage naturel
Natural Language Inference On Multinli
Natural Language Inference On Multinli
Métriques
Matched
Mismatched
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Matched
Mismatched
Paper Title
Repository
ERNIE 2.0 Large
88.7
88.8
ERNIE 2.0: A Continual Pre-training Framework for Language Understanding
T5-Base
87.1
86.2
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
ELC-BERT-base 98M (zero init)
84.4
84.5
Not all layers are equally as important: Every Layer Counts BERT
-
Snorkel MeTaL (ensemble)
87.6
87.2
Training Complex Models with Multi-Task Weak Supervision
T5-3B
91.4
91.2
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
GenSen
71.4
71.3
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning
RoBERTa
90.8
-
RoBERTa: A Robustly Optimized BERT Pretraining Approach
Charformer-Tall
83.7
84.4
Charformer: Fast Character Transformers via Gradient-based Subword Tokenization
GPST(unsupervised generative syntactic LM)
81.8
82.0
Generative Pretrained Structured Transformers: Unsupervised Syntactic Language Models at Scale
LM-CPPF RoBERTa-base
-
-
LM-CPPF: Paraphrasing-Guided Data Augmentation for Contrastive Prompt-Based Few-Shot Fine-Tuning
T5-11B
-
91.7
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
SMART+BERT-BASE
-
-
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization
T5-XXL 11B (fine-tuned)
92.0
-
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
RealFormer
86.28
86.34
RealFormer: Transformer Likes Residual Attention
TinyBERT-6 67M
84.6
83.2
TinyBERT: Distilling BERT for Natural Language Understanding
Multi-task BiLSTM + Attn
72.2
72.1
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Bi-LSTM sentence encoder (max-pooling)
70.7
71.1
Combining Similarity Features and Deep Representation Learning for Stance Detection in the Context of Checking Fake News
Adv-RoBERTa ensemble
91.1
90.7
StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding
-
GPT-2-XL 1.5B
36.5
37
LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions
UnitedSynT5 (335M)
89.8
-
First Train to Generate, then Generate to Train: UnitedSynT5 for Few-Shot NLI
-
0 of 67 row(s) selected.
Previous
Next
Natural Language Inference On Multinli | SOTA | HyperAI