HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Reconnaissance d'Entités Nommées (NER)
Named Entity Recognition On Conll
Named Entity Recognition On Conll
Métriques
F1
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
F1
Paper Title
Repository
BiLSTM-CRF+ELMo
93.42
Deep contextualized word representations
LUKE + SubRegWeigh (K-means)
95.27
SubRegWeigh: Effective and Efficient Annotation Weighing with Subword Regularization
Pooled Flair
94.13
CrossWeigh: Training Named Entity Tagger from Imperfect Annotations
Noise-robust Co-regularization + LUKE
95.60
Learning from Noisy Labels for Entity-Centric Information Extraction
LSTM-CRF
91.47
Neural Architectures for Named Entity Recognition
Noise-robust Co-regularization + BERT-large
94.04
Learning from Noisy Labels for Entity-Centric Information Extraction
RoBERTa + SubRegWeigh (K-means)
95.45
SubRegWeigh: Effective and Efficient Annotation Weighing with Subword Regularization
CrossWeigh + Pooled Flair
94.28
CrossWeigh: Training Named Entity Tagger from Imperfect Annotations
CL-KL
94.81
Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning
LUKE(Large)
95.89
LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention
BiLSTM-CNN-CRF
91.87
End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF
0 of 11 row(s) selected.
Previous
Next
Named Entity Recognition On Conll | SOTA | HyperAI