HyperAI

Named Entity Recognition Ner On Bc5Cdr

Métriques

F1

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleF1
gollie-annotation-guidelines-improve-zero88.4
optimizing-bi-encoder-for-named-entity91.9
Modèle 390.95
biomedical-named-entity-recognition-at-scale89.73
scibert-pretrained-contextualized-embeddings88.94
a-robust-and-domain-adaptive-approach-for-low87.38
biomedical-named-entity-recognition-at-scale89.73
scibert-pretrained-contextualized-embeddings88.11
collabonet-collaboration-of-deep-neural87.12
improving-named-entity-recognition-by90.99
accurate-clinical-and-biomedical-named-entity90.89
electramed-a-new-pre-trained-language90.03
focusing-on-possible-named-entities-in-active86
enhancing-label-consistency-on-document-level91.3
linkbert-pretraining-language-models-with90.22
universalner-targeted-distillation-from-large89.34