HyperAI

Multimodal Sentiment Analysis On Cmu Mosei 1

Métriques

Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
Accuracy
Paper TitleRepository
MARLIN (ViT-B)73.7MARLIN: Masked Autoencoder for facial video Representation LearnINg
Proposed: B2 + B4 w/ multimodal fusion81.14Gated Mechanism for Attention Based Multimodal Sentiment Analysis-
Multilogue-Net82.10Multilogue-Net: A Context Aware RNN for Multi-modal Emotion Detection and Sentiment Analysis in Conversation
MARLIN (ViT-S)72.69MARLIN: Masked Autoencoder for facial video Representation LearnINg
MMML88.22Multimodal Multi-loss Fusion Network for Sentiment Analysis
SeMUL-PCD88.62Multi-label Emotion Analysis in Conversation via Multimodal Knowledge Distillation-
Transformer-based joint-encoding82.48A Transformer-based joint-encoding for Emotion Recognition and Sentiment Analysis
ALMT-Learning Language-guided Adaptive Hyper-modality Representation for Multimodal Sentiment Analysis
Graph-MFN76.9Multimodal Language Analysis in the Wild: CMU-MOSEI Dataset and Interpretable Dynamic Fusion Graph-
UniMSE87.50UniMSE: Towards Unified Multimodal Sentiment Analysis and Emotion Recognition
SPECTRA87.34Speech-Text Dialog Pre-training for Spoken Dialog Understanding with Explicit Cross-Modal Alignment
MMLatch82.4MMLatch: Bottom-up Top-down Fusion for Multimodal Sentiment Analysis
MARLIN (ViT-L)74.83MARLIN: Masked Autoencoder for facial video Representation LearnINg
Modulated-fusion transformer82.45Modulated Fusion using Transformer for Linguistic-Acoustic Emotion Recognition
CAE-LR78Unsupervised Multimodal Language Representations using Convolutional Autoencoders-
0 of 15 row(s) selected.