Multi Label Classification On Openimages V6
Métriques
mAP
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | mAP | Paper Title | Repository |
---|---|---|---|
TResNet-L | 87.34 | Multi-label Classification with Partial Annotations using Class-aware Selective Loss | |
TResNet-L | 86.3 | Asymmetric Loss For Multi-Label Classification | |
TResNet-M | 86.72 | Multi-label Classification with Partial Annotations using Class-aware Selective Loss | |
TResNet-M | 86.8 | ML-Decoder: Scalable and Versatile Classification Head |
0 of 4 row(s) selected.