HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Apprentissage incrémentiel
Incremental Learning On Cifar 100 50 Classes 2
Incremental Learning On Cifar 100 50 Classes 2
Métriques
Average Incremental Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Average Incremental Accuracy
Paper Title
Repository
FOSTER
67.95
FOSTER: Feature Boosting and Compression for Class-Incremental Learning
-
BiC
53.21
Large Scale Incremental Learning
-
TCIL-Lite
73.50
Resolving Task Confusion in Dynamic Expansion Architectures for Class Incremental Learning
-
RMM (Modified ResNet-32)
67.61
RMM: Reinforced Memory Management for Class-Incremental Learning
-
PODNet (CNN)
63.19
PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning
-
D3Former
70.94
D3Former: Debiased Dual Distilled Transformer for Incremental Learning
-
DER(Standard ResNet-18)
72.45
DER: Dynamically Expandable Representation for Class Incremental Learning
-
iCaRL*
52.57
iCaRL: Incremental Classifier and Representation Learning
-
TCIL
73.72
Resolving Task Confusion in Dynamic Expansion Architectures for Class Incremental Learning
-
UCIR (CNN)*
60.18
Learning a Unified Classifier Incrementally via Rebalancing
UCIR (NME)*
60.12
Learning a Unified Classifier Incrementally via Rebalancing
CCIL-SD
65.86
Essentials for Class Incremental Learning
-
DER(Modified ResNet-32)
66.36
DER: Dynamically Expandable Representation for Class Incremental Learning
-
0 of 13 row(s) selected.
Previous
Next
Incremental Learning On Cifar 100 50 Classes 2 | SOTA | HyperAI