Image Generation On Cifar 10
Métriques
FID
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | FID |
---|---|
lessons-learned-from-the-training-of-gans-on | 8.17 |
Modèle 2 | 35.47 |
eagan-efficient-two-stage-evolutionary | 10.14 |
deep-polynomial-neural-networks | 40.45 |
adversarial-score-identity-distillation | 1.396 |
regularizing-generative-adversarial-networks | 8.46 |
refining-generative-process-with | 1.77 |
gans-trained-by-a-two-time-scale-update-rule | 24.8 |
generative-modeling-with-explicit-memory | 1.22 |
scire-solver-efficient-sampling-of-diffusion | 1.76 |
Modèle 11 | 48.29 |
clr-gan-improving-gans-stability-and-quality | 23.3 |
the-relativistic-discriminator-a-key-element | 25.60 |
subspace-diffusion-generative-models | 2.17 |
block-flow-learning-straight-flow-on-data | 2.29 |
adversarially-slicing-generative-networks | 1.36 |
robust-diffusion-gan-using-semi-unbalanced | 2.95 |
eagan-efficient-two-stage-evolutionary | 9.91 |
prescribed-generative-adversarial-networks | 52.202 |
peergan-generative-adversarial-networks-with | 21.55 |
densely-connected-normalizing-flows | 34.90 |
discriminator-contrastive-divergence-semi | 16.24 |
generative-latent-flow-a-framework-for-non | 44.6 |
poisson-flow-generative-models | 2.48 |
score-based-generative-modeling-in-latent | 6.89 |
quaternion-generative-adversarial-networks | 31.966 |
score-identity-distillation-exponentially | 1.71 |
improving-gan-training-with-probability-ratio | 10.7 |
likelihood-training-of-schrodinger-bridge-1 | 3.01 |
deep-polynomial-neural-networks | 16.79 |
blackout-diffusion-generative-diffusion | 4.58 |
connections-between-support-vector-machines | 27.12 |
generative-modeling-by-estimating-gradients | 25.32 |
lt-gan-self-supervised-gan-with-latent | 9.80 |
the-disappearance-of-timestep-embedding-in | 3.074 |
Modèle 36 | 17.87 |
ncp-vae-variational-autoencoders-with-noise-1 | 24.08 |
compensation-sampling-for-improved | 1.50 |
diffusion-models-are-innate-one-step | 1.54 |
elucidating-the-exposure-bias-in-diffusion | 1.8 |
contextual-convolutional-neural-networks | 19.66 |
pfgm-unlocking-the-potential-of-physics | 1.74 |
mode-seeking-generative-adversarial-networks | 28.73 |
improved-techniques-for-training-score-based | 10.87 |
the-gan-is-dead-long-live-the-gan-a-modern | 1.96 |
dual-contradistinctive-generative-autoencoder-1 | 17.9 |
on-gradient-regularizers-for-mmd-gans | 25.0 |
dist-gan-an-improved-gan-using-distance | 17.61 |
consistency-models | 5.83 |
spectral-normalization-for-generative | 21.7 |
progressive-distillation-for-fast-sampling-of-1 | 3.00 |
posterior-mean-matching-generative-modeling | 2.18 |
truncated-consistency-models | 2.05 |
variational-schrodinger-diffusion-models | 2.28 |
stable-rank-normalization-for-improved | 19.83 |
progressive-distillation-for-fast-sampling-of-1 | 2.57 |
learning-stationary-markov-processes-with | 18.27 |
discriminator-contrastive-divergence-semi | 21.67 |
denoising-diffusion-probabilistic-models | 3.17 |
improved-training-of-wasserstein-gans | 29.3 |
flow-matching-for-generative-modeling | 6.35 |
genie-higher-order-denoising-diffusion | 5.97 |
residual-flows-for-invertible-generative | 46.37 |
vitgan-training-gans-with-vision-transformers | 6.66 |
differentiable-augmentation-for-data | 4.61 |
first-order-generative-adversarial-networks | 27.4 |
consistency-models-made-easy | 2.11 |
-nets-deep-polynomial-neural-networks | 16.79 |
nvae-a-deep-hierarchical-variational | 32.53 |
direct-discriminative-optimization-your-1 | 1.30 |