Image Generation On Celeba 256X256
Métriques
bpd
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | bpd |
---|---|
generating-high-fidelity-images-with-subscale | 0.61 |
score-based-generative-modeling-in-latent | 0.70 |
styleswin-transformer-based-gan-for-high-1 | - |
ncp-vae-variational-autoencoders-with-noise-1 | - |
macow-masked-convolutional-generative-flow | 0.95 |
efficient-vdvae-less-is-more | 0.51 |
improved-transformer-for-high-resolution-gans | - |
adversarial-latent-autoencoders | - |
glow-generative-flow-with-invertible-1x1 | 1.03 |
residual-flows-for-invertible-generative | 0.992 |
locally-masked-convolution-for-autoregressive | 0.74 |
generative-latent-flow-a-framework-for-non | - |
latent-space-factorisation-and-manipulation | - |
taming-transformers-for-high-resolution-image | - |
augmented-normalizing-flows-bridging-the-gap | 0.72 |
nvae-a-deep-hierarchical-variational | 0.70 |
macow-masked-convolutional-generative-flow | 0.67 |