HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Graph Regression
Graph Regression On Zinc
Graph Regression On Zinc
Métriques
MAE
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
MAE
Paper Title
Repository
GPS
0.070 ± 0.002
Recipe for a General, Powerful, Scalable Graph Transformer
N2-GNN
0.059
Extending the Design Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman
PIN
0.096
Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes
-
PDF
0.066 ± 0.002
Towards Better Graph Representation Learning with Parameterized Decomposition & Filtering
ESA + rings + NodeRWSE + EdgeRWSE
0.051
An end-to-end attention-based approach for learning on graphs
-
CSA
0.056
Self-Attention in Colors: Another Take on Encoding Graph Structure in Transformers
CRaWl+VN
0.088
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
GraphMLPMixer
0.075 ± 0.001
A Generalization of ViT/MLP-Mixer to Graphs
BoP
0.297
From Primes to Paths: Enabling Fast Multi-Relational Graph Analysis
MMA
0.156
Multi-Mask Aggregators for Graph Neural Networks
GRIT
0.059
Graph Inductive Biases in Transformers without Message Passing
ChebNet
0.360
An Experimental Study of the Transferability of Spectral Graph Networks
NeuralWalker
0.065 ± 0.001
Learning Long Range Dependencies on Graphs via Random Walks
FactorGCN
0.366
Factorizable Graph Convolutional Networks
SAGNN
0.072±0.002
Substructure Aware Graph Neural Networks
CIN-small
0.094
Weisfeiler and Lehman Go Cellular: CW Networks
PNA
0.142
Principal Neighbourhood Aggregation for Graph Nets
EIGENFORMER
0.077
Graph Transformers without Positional Encodings
-
CIN++
0.074
CIN++: Enhancing Topological Message Passing
TIGT
0.057
Topology-Informed Graph Transformer
0 of 27 row(s) selected.
Previous
Next