HyperAIHyperAI

Graph Regression On Pgr

Métriques

R2
RMSE

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
R2
RMSE
Paper TitleRepository
GAT0.681±0.0000.546±0.681Graph Attention Networks-
GCN0.658±0.0000.565±0.658Semi-Supervised Classification with Graph Convolutional Networks-
GraphormerOOMOOMDo Transformers Really Perform Bad for Graph Representation?-
GATv20.666±0.0000.558±0.666How Attentive are Graph Attention Networks?-
GINDrop0.702±0.0000.527±0.702DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks-
ESA (Edge set attention, no positional encodings)0.725±0.0000.507±0.725An end-to-end attention-based approach for learning on graphs-
GIN0.696±0.0000.532±0.696How Powerful are Graph Neural Networks?-
PNA0.717±0.0000.514±0.717Principal Neighbourhood Aggregation for Graph Nets-
TokenGT0.684±0.0000.543±0.684Pure Transformers are Powerful Graph Learners-
0 of 9 row(s) selected.
Graph Regression On Pgr | SOTA | HyperAI