HyperAI

Graph Regression On Pcqm4Mv2 Lsc

Métriques

Test MAE
Validation MAE

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleTest MAEValidation MAE
edge-augmented-graph-transformers-global-self0.08620.0857
graph-propagation-transformer-for-graph0.08210.0809
recipe-for-a-general-powerful-scalable-graph0.08620.0852
topology-informed-graph-transformer-0.0826
graph-convolutions-enrich-the-self-attention-0.0860
do-transformers-really-perform-bad-for-graph-0.0864
the-information-pathways-hypothesis-0.0865
semi-supervised-classification-with-graph0.13980.1379
masked-attention-is-all-you-need-for-graphsN/A0.0235
ogb-lsc-a-large-scale-challenge-for-machine0.17600.1753
graph-inductive-biases-in-transformers-0.0859
highly-accurate-quantum-chemical-property0.07050.0693
graph-self-attention-for-learning-graph0.08760.0867
pure-transformers-are-powerful-graph-learners0.09190.0910
edge-augmented-graph-transformers-global-self0.06830.0671
triplet-interaction-improves-graph0.06830.0671
how-powerful-are-graph-neural-networks0.12180.1195
graph-propagation-transformer-for-graph0.08420.0833
one-transformer-can-understand-both-2d-3d0.07820.0772
the-information-pathways-hypothesis-0.0876