HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Graph Regression
Graph Regression On Pcqm4Mv2 Lsc
Graph Regression On Pcqm4Mv2 Lsc
Métriques
Test MAE
Validation MAE
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Test MAE
Validation MAE
Paper Title
Repository
EGT
0.0862
0.0857
Global Self-Attention as a Replacement for Graph Convolution
GPTrans-L
0.0821
0.0809
Graph Propagation Transformer for Graph Representation Learning
GPS
0.0862
0.0852
Recipe for a General, Powerful, Scalable Graph Transformer
TIGT
-
0.0826
Topology-Informed Graph Transformer
Graphormer + GFSA
-
0.0860
Graph Convolutions Enrich the Self-Attention in Transformers!
Graphormer
-
0.0864
Do Transformers Really Perform Bad for Graph Representation?
EGT+SSA+Self-ensemble
-
0.0865
The Information Pathways Hypothesis: Transformers are Dynamic Self-Ensembles
GCN
0.1398
0.1379
Semi-Supervised Classification with Graph Convolutional Networks
ESA (Edge set attention, no positional encodings)
N/A
0.0235
An end-to-end attention-based approach for learning on graphs
-
MLP-Fingerprint
0.1760
0.1753
OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs
GRIT
-
0.0859
Graph Inductive Biases in Transformers without Message Passing
Uni-Mol+
0.0705
0.0693
Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+
GRPE-Large
0.0876
0.0867
GRPE: Relative Positional Encoding for Graph Transformer
TokenGT
0.0919
0.0910
Pure Transformers are Powerful Graph Learners
EGT + Triangular Attention
0.0683
0.0671
Global Self-Attention as a Replacement for Graph Convolution
TGT-At
0.0683
0.0671
Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
GIN
0.1218
0.1195
How Powerful are Graph Neural Networks?
GPTrans-T
0.0842
0.0833
Graph Propagation Transformer for Graph Representation Learning
Transformer-M
0.0782
0.0772
One Transformer Can Understand Both 2D & 3D Molecular Data
EGT+SSA
-
0.0876
The Information Pathways Hypothesis: Transformers are Dynamic Self-Ensembles
0 of 20 row(s) selected.
Previous
Next